Variedades Diferenciables Convocatoria de enero de 2021. Grupo B

Tiempo: 2 horas y media horas

1. [2 puntos] Si $\{u_1, \ldots, u_p\}$ son vectores linealmente independientes en \mathbb{R}^n con $p \leq n$ y se satisface la relación $u_1 \wedge v_1 + u_2 \wedge v_2 + \cdots + u_p \wedge v_p = 0$ para una cierta familia de vectores $\{v_1, \ldots, v_p\}$, demostrar que existen coeficientes simétricos $a_i^J = a_j^i$ tales que para cada i se verifica

 $v_i = a_i^j u_j.$

- 2. [2 puntos] Sea G ⊂ GL(n. ℝ) un grupo de (Lie de) matrices y sean L_A(X) = AX y R_A(X) = XA las traslaciones a la izquierda y la derecha, respectivamente. Si Ψ : G → G está definida por Ψ(X) = X⁻¹, demostrar que una 1-forma ω ∈ Ω¹(G) es invariante por traslaciones a la izquierda si y sólo si Ψ*ω es invariante por traslaciones a la derecha.
- 3. [2 puntos] Sea V un espacio vectorial de dimensión n y la variedad M = End(V). Se define $\mathcal{A} = \{ \psi \in M \mid \det(\operatorname{Id} + \psi) \neq 0 \}$. Demostrar que la aplicación $F : \mathcal{A} \to M$ definida por

$$F(\psi) = (\mathrm{Id} - \psi) (\mathrm{Id} + \psi)^{-1}$$

es diferenciable y satisface $F^2 = \text{Id.}$ Deducir que F es un difeomorfismo de A.

4. [4.0 puntos] En \mathbb{R}^4 con coordenadas x, y, z, t se considera el sistema dado por las formas diferenciales

$$\omega^1 = (z - x^2) dx + xy dy + dz, \quad \omega^2 = f(x, y, z, t) dx + g(x, y, z, t) dy.$$

siendo f, g funciones diferenciables.

- (a) Determinar condiciones sobre f,g para que el ideal $\mathcal I$ generado por ω^1,ω^2 sea diferencial.
- (b) Justificar que para (f,g) = (1,1), la forma

$$\theta = \exp(x) ((1 + z - x - xy - x^2) dx + (1 - x) dy + dz)$$

pertenece a \mathcal{I} . Hallar su expresión en términos de ω^1 y ω^2 .

(c) Para f = g = 1, se considera en \mathbb{R}^3 la distribución dada por

$$\Delta = \left\{ \mathbf{X} \in \mathfrak{X}(\mathbb{R}^3) \mid \theta(\mathbf{X}) = 0 \right\}.$$

Justificar que Δ es involutiva y determinar campos \mathbf{X},\mathbf{Y} en Δ tales que

$$[\mathbf{X},\mathbf{Y}]=0.$$

(d) Hallar coordenadas u, v, w de \mathbb{R}^3 de modo que

$$\mathbf{X} = \frac{\partial}{\partial u}, \quad \mathbf{Y} = \frac{\partial}{\partial v}.$$